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Defence mechanisms against parasites and pathogens are some of the most elaborate biological systems in animals.
The oily secretion of the avian uropygial gland has been suggested to serve as a chemical defence against feather
and eggshell bacteria. Yet, the traits associated with uropygial gland oil production are not well understood. We
conducted a phylogenetic analysis comprising 132 European bird species aiming to test: (1) whether life-history and
ecological traits drive gland size evolution by potentially promoting microbial infestation and (2) how these traits
affects change in the gland size throughout the annual cycle. We show that the size of the uropygial gland is
dynamic (i.e. increasing from the nonbreeding to the breeding season, independent of sex). Furthermore, we found
that the year-round size of the gland was similar between sexes and was correlated with different ecological and
life-history traits promoting microbial infection throughout the annual cycle. During the breeding season, the total
eggshell surface area in a clutch correlated significantly and positively with the gland size, suggesting the
importance of oil in protecting eggs from microbes. Social species exhibited a larger gland size increase during the
breeding season compared to nonsocials; a change that was also predicted by the total eggshell surface area.
Aquatic, riparian and non-migratory species had larger glands than terrestrials and migrants, respectively. The
findings of the present study suggest that aquatic environments may promote the production of gland oil, through
either the need of waterproofing the plumage and/or defending it against the intensified feather degradation in
these moist conditions. Finally, we found a negative effect of the incubation period on uropygial gland size, which
may suggest an energetic constraint imposed by other development-connected costly activities. Our results show
that the role of the uropygial gland dynamically varies during the annual cycle, potentially in response to seasonal
variation in parasitic infection risk. © 2013 The Linnean Society of London, Biological Journal of the Linnean
Society, 2013, ••, ••–••.
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INTRODUCTION

Parasitic relationships between animal hosts
and microorganisms are common in nature, yet the

factors controlling infection are mostly unknown
(Schmid-Hempel, 2011). Free-living animals and
humans carry a wide variety of bacterial pathogens
(Bush et al., 2001; Schmid-Hempel, 2011) against
which a diverse defence repertoire has evolved (Bush
et al., 2001; Moore, 2002). For example, the plumage
of birds is known to provide habitat for diverse
parasitic communities, some of which are detrimental
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to feathers because they decompose keratin
(keratinolytic fungi and bacteria; Burtt & Ichida,
1999; Shawkey, Pillai & Hill, 2003; Ruiz-Rodríguez
et al., 2009; Ruiz-de-Castañeda et al., 2012).

Empirical results suggest that uropygial gland oil
plays a role in antimicrobial protection against
feather-degrading bacteria (Shawkey et al., 2003;
Reneerkens et al., 2008; Møller, Czirják & Heeb, 2009;
Soler et al., 2012). For example, under laboratory
conditions, the gland oil is shown to be an effective
growth inhibitor of several feather degrading micro-
organisms (Shawkey et al., 2003; Reneerkens et al.,
2008). Also, gland size was found to be negatively
correlated with feather bacteria load (Møller et al.,
2009). However, two recent in vivo studies found no
significant negative effect of gland blocking or remov-
ing on the abundance of feather-degrading bacteria
(Czirják et al., 2013; Giraudeau et al., 2013). These
findings suggest that gland secretion might regulate
harmful surface microbiota; however, its effect may
differ between species with different ecological and
life-history traits, and may vary during the avian
annual cycle. Therefore, further studies are needed
to obtain better insight into the diversity of the
avian–microbial interactions potentially mediated by
uropygial gland oil.

Exterior parasitic microbial communities not only
inhabit the feathers and skin of birds, but also have
been found to dwell on the surface of eggs, conse-
quently reducing egg viability (Cook et al., 2003, 2005;
Soler et al., 2012; but see also Peralta-Sanchez et al.,
2010; Wang, Firestone & Beissinger, 2011). Shortly
after laying, avian eggshells are colonized by microbes
that proliferate rapidly under suitable ambient condi-
tions, penetrate through shell pores, and infect egg
contents, ultimately causing embryo mortality (Cook
et al., 2003, 2005; Shawkey et al., 2009; Ruiz-de-
Castañeda et al., 2011). Because uropygial gland oil
can be directed to the bacteria community living in the
nest during incubation, it has been suggested that
gland secretions may serve as a complementary way of
defence against bacteria-induced embryo mortality
(Martín-Vivaldi et al., 2009; Shawkey et al., 2009;
Møller, Erritzøe & Rózsa, 2010a). Furthermore, the
increase in gland size and change in oil composition
during incubation has been suggested to be an evolu-
tionary response for egg protection by the incubating
sex (Reneerkens et al., 2007; Martín-Vivaldi et al.,
2009; Pap et al., 2010). Because the presence of para-
sitic microbial communities varies seasonally as a
result of the breeding chronology of the host, we
predicted that the selective pressures inflicted by the
microorganisms on the avian host would subsequently
vary during the annual cycle.

The importance of the secreted waxes originating
from the uropygial gland is well known because birds

spend a considerable part of their daily time budget
preening, during which the oily secretions are spread
throughout the plumage (Cotgreave & Clayton, 1994).
Furthermore, there are only very few extant bird
species that do not possess the uropygial gland, and
most of the exceptions are either flightless species or
the ones that produce powder down for plumage
maintenance (Jacob & Ziswiler, 1982; Delhey, Peters
& Kempenaers, 2007). Unexpectedly, however, asso-
ciations between the size of the gland, which is a good
proxy for the amount of waxes secreted (Møller et al.,
2009; Pap et al., 2010), and life-history or ecological
characteristics, which mirror pathogen infestation
risks, are still poorly understood (Reneerkens et al.,
2007; Møller et al., 2010a) despite the recent upsurge
of investigations about the function of the uropygial
gland secretions (Moyer, Rock & Clayton, 2003;
Shawkey et al., 2003; Galván et al., 2008; Reneerkens
et al., 2008; Martín-Vivaldi et al., 2009; Møller
et al., 2009; Giraudeau et al., 2010a; Møller et al.,
2010a; Møller, Erritzøe & Nielsen, 2010b; Amat
et al., 2011; Mardon, Saunders & Bonadonna, 2011;
Pérez-Rodríguez, Mougeot & Bortolotti, 2011;
Whittaker et al., 2011; Leclaire et al., 2012). If
uropygial gland secretion is an adaptive countermeas-
ure of hosts against bacterial infestation, we would
predict that the huge variation in gland size among
birds parallels the pathogen selection regime that
hosts might experience (Møller et al., 2010a, b; Soler
et al., 2012). Epidemiological studies show that mois-
ture, migration, sociality, and breeding in cavities
expose host species to higher risks of infection (Møller
& Erritzøe, 1996; Figuerola & Green, 2000; Tella,
2002; Cook et al., 2005). Because the incubation
period may mediate the growth of microbes on the egg
surface (Cook et al., 2003; Shawkey et al., 2009;
Ruiz-de-Castañeda et al., 2011; Peralta-Sanchez et al.,
2012) and the fledging period may constrain the
development of elaborate and functional defence
traits (Starck & Ricklefs, 1998), we included these
traits in a multivariate analyses on gland size.

We conducted a phylogenetic comparative study of
2706 individuals from 132 European avian species.
We collected data on gland size from both males and
females during the nonbreeding and breeding season.
With the premise that gland secretion may serve as
‘antibiotics’ on both the plumage and eggs, we tested
predictions based on three concepts. First, we tested
for potential factors explaining seasonal variation in
uropygial gland size, such as the allocation of oily
secretions to eggs during the breeding or the alloca-
tion to the feathers and skin throughout the year. We
predicted that the gland size outside of breeding
season would mainly be influenced by factors promot-
ing microbial infection on plumage and/or skin (e.g.
migratory behaviour, habitat), whereas the gland size
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during breeding is associated with the microbial
infection of the eggs (e.g. eggshell surface, sociality).
Second, we tested whether the sexual dimorphism of
gland size measured during the breeding season is
predicted by the incubation share of each sex. We
expected that the sex with greater incubation share
would have a larger gland. Third, we predicted that
there would be an increase in uropygial gland
size from the nonbreeding to breeding season
(Martín-Vivaldi et al., 2009; Pap et al., 2010), and that
this morphological change would be related to ecologi-
cal and life-history traits that might enhance the
host’s abilities to fight microbial infections during
breeding.

MATERIAL AND METHODS
FIELD DATA COLLECTION

We collected year-round data on the size of the
uropygial gland of adult birds between 2003 and
2012 at several sites across Romania and Norway.
All captured birds were marked with an individually
numbered aluminium ring, sexed (when possible),
and the maximum length, width, and height of
the uropygial gland was measured with a digital
calliper (Microprecision Calibration Inc.; precision
of 0.01 mm). Uropygial gland size was expressed
as the product of these three measures sensu
Galván & Sanz (2006). Data on the glaucous
gull (Larus hyperboreus), black-legged kittiwake
(Rissa tridactyla), and common eider (Somateria
mollissima) were collected in Ny-Ålesund, on the
island of Svalbard, from May to June 2010 by P.L.P.
and Kjetil Sagerup, whereas birds from Romania
were measured by O.V., P.L.P., C.I.V., and I.K. These
data originating from captured birds were supple-
mented by data acquired from corpses (e.g. road
kills) during 2010–2012. To minimize potential
changes in gland size as a result of fatality,
uropygial measurements were only taken from
corpses found shortly after the time of death. In
total, we had information available from Romania
and Svalbard on the size of the uropygial gland of
2706 individuals from 132 species. To estimate the
reliability of our measures, we used information on
individual birds for which the uropygial gland size
was measured by two different observers. The
between observer repeatability was high (R15 > 0.75,
P < 0.001). Additionally, within observer repeatabil-
ity was also satisfactory (R15 > 0.85, P < 0.0001)
based on repeated gland size measures of the same
individuals. Finally, because we were restricted to
measuring the size of only the external portion of
the uropygial gland, we tested the reliability of our
size estimates by comparing our data with total

gland mass (i.e. dissected) reported by Møller et al.
(2010a). The gland volume estimate was signifi-
cantly and positively correlated with gland mass
[phylogenetic least squares model: β (SE) = 0.83
(0.07), t = 11.85, N = 59, P < 0.0001, λ = 0.92],
providing strong support for the reliability of our
measurements.

LIFE-HISTORY AND ECOLOGICAL VARIABLES

We obtained body mass data from Dunning (2008).
In cases of species for which the data of several
subspecies or populations were reported, we only
used populations and subspecies within Europe. We
extracted female and male mean body masses sepa-
rately, although we also calculated an overall mean
body mass irrespective of the sexes. Life-history
variables, such as egg weight, clutch size, length of
incubation and fledging periods, and sex-specific
incubation share, were extracted from Cramp &
Perrins (1977–1994). We calculated eggshell surface
area for each species based on the mean egg weight
of the species sensu Paganelli, Olszowka & Ar
(1974). Total eggshell surface area of each species
was calculated as the product of the surface of a
single egg and the mean clutch size of the species.
Species were classified on the basis of ecological
characters (Cramp & Perrins, 1977–1994): (1) type
of nest: breeding in open or hole nests; (2) habitat
preferences: terrestrial (rarely encountering water),
riparian (living in moist habitats, e.g. marshes and
sedges) or aquatic (species with direct contact to
water); (3) migration strategy: residents (species
that have completely overlapping breeding and
nonbreeding ranges), short-distance migrants (with
breeding and nonbreeding ranges partially overlap-
ping or with wintering ranges north to the Sahara)
or long-distance migrants (species wintering in sub-
Saharan Africa); (4) social behaviour during breed-
ing: social (colonial breeders) or solitary (territorial
species); (5) social behaviour outside the breeding
season: social (gregarious during winters) or solitary
(which do not exhibit flocking behaviour); (6) incu-
bation share: egalitarian (approximately 50 : 50
share of males and females) or only-female (clutches
mostly or fully incubated by the female). Informa-
tion on uropygial gland size, life-history, and ecology
are shown in the Appendices (Tables A1 and A2).

STATISTICAL ANALYSIS

Our statistical analyses were performed on several
levels. First, we investigated the overall mean gland
size of species, including the calculation of the means
of both sexes and all data collected at any time during
the year (2706 individuals, 132 species). Second,
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because uropygial gland may change significantly in
size seasonally (Martín-Vivaldi et al., 2009; Pap et al.,
2010), we analyzed the gland sizes separately for the
breeding and nonbreeding periods. The two periods
were arbitrarily defined as: reproductive season
(between 1 April and 31 July, when most of the
birds breed; based on our field observation) and
nonreproductive season (between 1 August and 31
March). Third, we tested whether there is significant
change in gland size between the reproductive
and nonreproductive season across species using
phylogenetic paired t-tests (Lindenfors, Revell &
Nunn, 2010). The latter analyses were performed for
males and females separately. Because there was a
significant seasonal change in both sexes but no
sex differences in either season (see below), we
also computed the mean change in gland size per
species, irrespective of sex. This was expressed as
the difference between log-transformed uropygial
gland size during the reproductive season minus
nonreproductive season and was later used as a
response variable in a phylogenetic least squares
(PGLS) model. Fourth, we performed phylogenetic
paired t-tests (Lindenfors et al., 2010) to test whether
sexes differ regarding their gland size during the
breeding and nonbreeding season, respectively. Then,
we calculated a difference between females and
males, expressed as the difference in the log-
transformed uropygial gland size of the sexes for each
species during the breeding season. The latter differ-
ence was then included in a PGLS model as a
response variable with body mass difference and incu-
bation share as response variables. Sample size for
the latter two analyses was somewhat reduced
because sex determination for several species was not
possible and/or because we did not capture both sexes
of certain species. Body mass, total eggshell surface
area, and the uropygial gland size were log-
transformed in all models. Because the sociality of
species may differ between the breeding and the
nonbreeding season, we used two sets of categoriza-
tion in the analyses of gland size measured during the
two periods: (1) in the analysis of the overall gland
size and the seasonal change in gland size, we used
the nonbreeding social categorization, which largely
corresponds with the sociality over the whole annual
cycle, and (2) in the analysis of the gland size during
the breeding season, we used the social categorization
for this period.

To investigate the relationship between gland size,
ecological, and life-history traits, we used PGLS
models (Pagel, 1997, 1999). We conducted all analy-
ses setting the degree of phylogenetic dependence (λ)
to the most appropriate degree evaluated for each
model (Freckleton, Harvey & Pagel, 2002). To repre-
sent phylogenetic relationships among taxa, we used

the dated phylogeny reported by Thuiller et al.
(2011). We report full and minimal models, with the
latter being obtained by eliminating nonsignificant
predictors, except body mass to control for allometry,
from the full model in a stepwise backward manner
using α = 0.05. We are aware of possible collinearity
problems caused by the body mass dependence of
several explanatory variables used. To detect such
problems, we repeated the multivariate models using
residual uropygial gland volume, extracted from a
log-log linear regression between gland volume and
body mass. Our conclusions did not change using
these models, nor did the models using raw gland
volume show signs of multicollinearity. However,
because working with residuals in PGLS models is
not recommended (Freckleton, 2009), we report the
result from models using raw uropygial gland
volumes.

All statistical analyses were conducted in the R
statistical environment (R Development Core Team,
2011) with ‘nlme’ and ‘ape’ add-on packages and the
‘gls’ function (Paradis, Claude & Strimmer, 2004;
Pinheiro et al., 2011). Our sample sizes differed
among species. Such differences in sampling effort
are known to be sources of bias because different
estimates are not estimated with similar precision
(Garamszegi & Møller, 2010, 2011). However, if
within species variance is particularly small com-
pared to between species variance, then ignoring
this measurement error has no effect on type I error
of phylogenetic analyses (Harmon & Losos, 2005).
Conspecifics gland size was highly similar in species
for which at least two individuals were available
(R105 = 0.94, P < 0.0001); therefore, we present the
unweighed models. Furthermore, unweighed PGLS
models were more competitive (had the lowest
Akaike information criterion values) than models
weighed by sample size (data not presented),
which further strengthens the minor effect of the
within-species variance and the variation in
the within-species sample size on the results.
However, we repeated the analysis weighing the
models by log-sample size. As expected, the results
(Tables 1–4) were qualitatively similar to the models
not weighed by sample size (see Appendix,
Tables A3–A6).

To test seasonal change in uropygial gland size and
sex differences during the breeding season, we used
phylogenetic paired t-test, using the ‘phyl.pairedttest’
function of the ‘phytools’ package in R (Lindenfors
et al., 2010). We report the mean ± SE values and
two-tailed statistical tests with α = 0.05. Because the
phylogenetic methods applied here do not allow the
graphical presentation of phylogenetically corrected
data, all reported values are based on raw species
data.
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RESULTS
OVERALL UROPYGIAL GLAND SIZE

Life-history variables were important in explaining
variation in uropygial gland size of European birds.

Besides the effect of the body mass, the incubation
period significantly explained the gland size in both
full and minimal multivariate models (Fig. 1,
Table 1). Species with long incubation periods had
significantly smaller glands compared to those with

Table 1. Full and minimal phylogenetic generalized least squares models explaining overall uropygial gland size

Full model Minimal model

β (SE) t P β (SE) t P

Intercept 2.14 (0.63) 3.40 0.0009 2.55 (0.40) 6.33 < 0.0001
Body mass 0.90 (0.08) 11.91 < 0.0001 0.93 (0.05) 17.30 < 0.0001
Incubation –0.03 (0.02) –2.00 0.0482 –0.04 (0.01) –2.41 0.0174
Fledging –0.01 (0.01) –1.31 0.1921
Total eggshell surface 0.14 (0.15) 0.98 0.3312
Habitat: riparian* 0.19 (0.14) 1.38 0.1701

Aquatic 0.41 (0.22) 1.89 0.0618
Migration: short† –0.05 (0.09) –0.57 0.5664

Long –0.17 (0.10) –1.70 0.0917
Sociality 0.01 (0.08) 0.10 0.9240
Nest type: open 0.01 (0.11) 0.07 0.9422

The minimal models were obtained by eliminating nonsignificant predictors from the full models in a backward stepwise
manner based on the largest P-value. Model intercepts implement the first level of each factor (i.e. terrestrial species in
the case of habitat and resident species in the case of migratory behaviour). All other levels of the candidate factor are
compared to the level implemented in the intercept. Significant P-values are shown in bold.
*No significant difference between groups riparian and aquatic: β (SE) = 0.23 (0.25), t = 0.91, P = 0.3625.
†No significant difference between groups short- and long-distance migrant: β (SE) = −0.11 (0.08), t = −1.37, P = 0.1717.

Table 2. Full and minimal phylogenetic generalized least squares models explaining breeding season uropygial gland size

Full model Minimal model

β (SE) t P β (SE) t P

Intercept 1.37 (0.74) 1.85 0.0665 1.20 (0.69) 1.74 0.0851
Body mass 0.78 (0.09) 8.25 < 0.0001 0.76 (0.09) 8.80 < 0.0001
Incubation –0.05 (0.02) –2.27 0.0250 –0.05 (0.02) –2.68 0.0084
Total eggshell surface 0.41 (0.19) 2.14 0.0351 0.45 (0.18) 2.44 0.0161
Habitat: riparian* 0.19 (0.14) 1.33 0.1863

Aquatic 0.28 (0.24) 1.16 0.2502
Migration: short† –0.06 (0.10) –0.54 0.5902

Long –0.15 (0.11) –1.37 0.1727
Fledging 0.00 (0.01) –0.32 0.7489
Sociality: social 0.03 (0.14) 0.23 0.8184
Nest type: open 0.06 (0.12) 0.52 0.6012

The minimal models were obtained by eliminating nonsignificant predictors from the full models in a backward stepwise
manner based on the largest P-value. Model intercepts implement the first level of each factor (i.e. terrestrial species in
the case of habitat and resident species in the case of migratory behaviour). All other levels of the candidate factor are
compared to the level implemented in the intercept. Significant P-values are shown in bold.
*No significant difference between groups riparian and aquatic: β (SE) = 0.09 (0.27), t = 0.32, P = 0.7487.
†No significant difference between groups short- and long-distance migrant: β (SE) = −0.10 (0.09), t = −1.05, P = 0.2965.
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Table 3. Full and minimal phylogenetic generalized least squares models explaining nonbreeding season uropygial gland
size

Full model Minimal model

β (SE) t P β (SE) t P

Intercept 3.45 (0.71) 4.87 < 0.0001 3.03 (0.45) 6.77 < 0.0001
Body mass 0.96 (0.08) 11.38 < 0.0001 0.91 (0.06) 14.30 < 0.0001
Incubation –0.04 (0.02) –2.07 0.0424 –0.05 (0.02) –2.77 0.0071
Habitat: riparian* 0.09 (0.13) 0.69 0.4904 0.06 (0.13) 0.46 0.6458

Aquatic 0.66 (0.23) 2.84 0.0059 0.60 (0.23) 2.58 0.0118
Migration: short† –0.19 (0.11) –1.67 0.0984 –0.10 (0.11) –0.93 0.3545

Long –0.32 (0.12) –2.73 0.0079 –0.25 (0.11) –2.27 0.0262
Sociality: social –0.18 (0.11) –1.72 0.0889
Nest type: open 0.00 (0.11) 0.01 0.9893
Fledging –0.01 (0.01) –1.36 0.1789
Total eggshell surface –0.09 (0.16) –0.54 0.5900

The minimal models were obtained by eliminating nonsignificant predictors from the full models in a backward stepwise
manner based on the largest P-value. Model intercepts implement the first level of each factor (i.e. terrestrial species in
the case of habitat and resident species in the case of migratory behaviour). All other levels of the candidate factor are
compared to the level implemented in the intercept. Significant P-values are shown in bold.
*No significant difference between groups riparian and aquatic: β (SE) = −0.54 (0.26), t = −1.71, P = 0.0916.
†Significant difference between groups short- and long-distance migrant: β (SE) = 0.54 (0.26), t = 2.06, P = 0.0427.

Table 4. Full and minimal phylogenetic generalized least squares models explaining seasonal change in uropygial gland
size (difference between the values during the reproductive season minus the value obtained during the nonreproductive
season)

Full model Minimal model

β (SE) t P β (SE) t P

Intercept –1.18 (0.64) –1.84 0.0716 –0.83 (0.52) –1.61 0.1116
Body mass –0.08 (0.08) –1.04 0.3022 –0.10 (0.07) –1.38 0.1728
Total eggshell surface 0.45 (0.18) 2.47 0.0169 0.34 (0.16) 2.19 0.0324
Sociality: social 0.36 (0.11) 3.29 0.0018 0.30 (0.08) 3.59 < 0.0001
Incubation –0.02 (0.02) –1.21 0.2315
Fledging 0.00 (0.01) 0.36 0.7216
Habitat: riparian* 0.07 (0.10) 0.65 0.5197

Aquatic 0.02 (0.17) 0.10 0.9215
Migration: short† 0.05 (0.11) 0.40 0.6881

Long 0.13 (0.11) 1.19 0.2409
Nest type: open –0.06 (0.08) –0.71 0.4794

The minimal models were obtained by eliminating nonsignificant predictors from the full models in a backward stepwise
manner based on the largest P-value. Model intercepts implement the first level of each factor (i.e. terrestrial species in
the case of habitat and resident species in the case of migratory behaviour). All other levels of the candidate factor are
compared to the level implemented in the intercept. Significant P-values are shown in bold.
*No significant difference between groups riparian and aquatic: β (SE) = −0.06 (0.20), t = −0.28, P = 0.7776.
†No significant difference between groups short- and long-distance migrant: β (SE) = −0.10 (0.08), t = −0.31, P = 0.2303.
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short incubation periods. The overall gland size was
marginally explained by the migratory behaviour and
habitat (Table 1), which was strengthened by the sig-
nificant effect of these traits in the PGLS weighed
models (see Appendix, Table A3).

UROPYGIAL GLAND SIZE DURING AND OUTSIDE

THE REPRODUCTIVE SEASON

The varying influence of the breeding and
nonbreeding season versus ecological and life-history
traits on uropygial gland size indicates that this
organ is differentially affected by a variety of factors
(Tables 2 and 3). During the breeding season, incuba-
tion period significantly and negatively explained the
gland size, whereas total eggshell surface had a sig-
nificant positive effect (Fig. 2A, Table 2). In the
nonbreeding season, the negative effect of incubation
period still holds, whereas the effect of the total
eggshell surface lost support (Fig. 2B, Table 2). Addi-
tionally, the gland size during the nonbreeding season
was explained by migratory behaviour and habitat
(Fig. 3A, B, Table 3), with gland size gradually
decreasing with increasing migratory distance.
Aquatic species had significantly larger gland sizes
compared to terrestrial birds, whereas riparian
species living in moist habitats were intermediate
between the two. Nest type and fledging period had
no effect on gland size during the breeding and
nonbreeding periods.

SEXUAL DIMORPHISM IN UROPYGIAL GLAND SIZE

There was no difference in the uropygial gland size
measured during the breeding season between the
sexes across species (phylogenetic paired t-test,
t = 0.10, N = 73, P = 0.9193, λ = 0.54). Similarly, the
difference between sexes in gland size measured
during the nonbreeding season was nonsignificant
(t = 0.08, N = 13, P = 0.99392, λ = 0.00), although
sample size was low. Sex differences in uropygial
gland size during the reproductive season were posi-
tively correlated with body size dimorphism [PGLS,
β (SE) = 1.12 (0.36), t = 3.11, P = 0.0027, λ = 0.06] and

Figure 1. The relationship between the residual overall
uropygial gland size (measured during the whole annual
cycle and corrected for the body mass) and incubation
period of 132 European bird species. Slope obtained from
standard linear regressions are shown.

Figure 2. The relationship between the relative uropygial
gland size (corrected for the body mass) measured during
the breeding (A) and nonbreeding (B) season and the total
eggshell surface area. The slope obtained from standard
linear regression is shown.
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were not explained significantly by the incubation
share of the sexes [β (SE) = −0.01 (0.07), t = 3.11,
P = 0.9175].

SEASONAL CHANGE IN UROPYGIAL GLAND SIZE

Uropygial gland size increased significantly during
the breeding compared to the nonbreeding season
across species, in both males (phylogenetic paired
t-test, t = 2.21, N = 16, P = 0.0459, λ = 0.83) and
females (t = 2.52, N = 16, P = 0.0254, λ = 0.95; Fig. 4).
Social species exhibit a larger increase in uropygial
gland size during the reproductive season compared
to the nonreproductive period than do nonsocial

species (Fig. 5A, Table 4). Additionally, the increase in
gland size during breeding was positively correlated
with total eggshell surface (Fig. 5B, Table 4). Body
mass did not predict the change in uropygial gland
size, although we retained in the model to control for
potential allometric effect of the size.

DISCUSSION
THE FUNCTION OF THE GLAND DURING BREEDING

Owing to the possible antimicrobial properties of
avian uropygial gland secretions, our results are con-
sistent with the hypothesis that life-history and eco-
logical traits promoting infestation play an important
role in host–microorganism interactions. We found
that the total eggshell surface area is significantly
and positively correlated with the size of the
uropygial gland measured during the reproductive
season, but not with measures outside the breeding
season. This finding is consistent with our prediction
that the variation in gland size between species is
influenced by the amount of gland oil needed to coat
the surface of eggs in a clutch (Cook et al., 2003, 2005;
Shawkey et al., 2009; Ruiz-de-Castañeda et al., 2011;
Soler et al., 2012). Interestingly, none of the life-
history and ecological traits that may promote micro-
bial infection (Møller & Erritzøe, 1996; Figuerola &
Green, 2000; Tella, 2002; Cook et al., 2005), and some
of which proved to significantly influence the varia-
tion of the gland size during the nonbreeding period,
had an effect during breeding (Tables 2, 3). This
suggests that the gland secretion may be directed
against different microbial communities during the

Figure 3. The relationship between the relative uropygial
gland size (corrected for the body mass) measured during
the nonreproductive season and the migratory behaviour
(A) and habitat use (B). Error bars represent the SEs of
the means. Numbers denote corresponding sample sizes.

Figure 4. The difference in the uropygial gland sizes of
males and females measured during the nonbreeding and
breeding seasons. Numbers denote corresponding sample
sizes.
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nonbreeding and breeding periods. We also found that
gland size is significantly larger during breeding com-
pared to the nonbreeding period, and the magnitude
of size increment is positively correlated with the
eggshell surface area and sociality. This association
strengthens our previous result on the need to protect
the eggs with gland oil. However, owing to the cost of
oil production (Piault et al., 2008; Pap et al., 2013),
only those species whose life-history and ecological
traits promote the proliferation of microbes during
breeding may invest much in antimicrobial defence.
Our results show that the amount of investment in
reproduction and sociality is a factor that may influ-

ence microbial infection and hence antimicrobial
defence. The positive association between eggshell
surface and gland size is in concert with several
studies. First, uropygial gland size is positively asso-
ciated with hatching success in birds; thus, there is
an apparent direct fitness consequence of the pro-
duced oil amounts (Møller et al., 2010a). Second,
uropygial secretion reduces bacterial loads of egg-
shells and hatching failures of European birds (Soler
et al., 2012). Third, it is consistent with findings that
microorganisms have a negative effect on egg viability
as a result of trans-shell infections during incubation
(Cook et al., 2003, 2005).

By contrast to that found in two avian species
(Martín-Vivaldi et al., 2009; Pap et al., 2010), we
found no sexual size dimorphism in gland size during
the breeding season across species. Furthermore,
sexual dimorphism was not explained by the incuba-
tion share of the sexes. The results of the present
study show that both sexes are equally exposed to
selection by microbes during the breeding period (but
see also Reneerkens et al., 2007). Our results show
that the gland size increase during breeding is a
general phenomenon and applies to a wide range of
avian species. Our results strengthen the previous
findings about the change in the quantity and com-
position of the gland oil during the annual cycle
in birds, which may be regulated by the seasonal
variation of its function (Reneerkens, Piersma &
Sinninghe Damsté, 2005; Martín-Vivaldi et al., 2009;
Pap et al., 2010). Alternatively, there may be other
reasons for such a seasonal effect not only including
lower temperatures and hence lower microbial
growth, but also lower activity and hence less dirt
being deposited on the plumage when wintering.
These hypotheses, however, remain to be tested.

THE FUNCTION OF THE GLAND OUTSIDE

THE BREEDING SEASON

We found that aquatic species have larger glands
than terrestrial birds during the nonbreeding season,
a finding that is consistent with the originally sug-
gested waterproofing function of the gland (Jacob &
Ziswiler, 1982; Giraudeau et al., 2010a). The relation-
ship between gland size and the use of aquatic
habitat could, however, be additionally explained by
the indirect effect of moisture facilitating microbial
activity and growth (Burtt & Ichida, 1999; Cook et al.,
2005). Under this scenario, microorganisms may have
greater effect on the host’s plumage in aquatic and
riparian habitats than in drier environments. Our
findings demonstrated that gland size increased
from terrestrial to aquatic species, with riparian
species having intermediate sizes. Thus, our study
suggests that an aquatic environment may directly or

Figure 5. The increase of the uropygial gland size
between the nonbreeding and breeding season in relation
to sociality (A) and total eggshell surface area (B). Error
bars represent the SEs of the means. Numbers denote
corresponding sample sizes. The slope obtained from
standard linear regression is shown.
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indirectly affect the production of gland oil, through
the need of waterproofing the plumage and/or defend-
ing it against potentially intensified feather parasit-
ism in moist conditions. Our findings propose that
increased gland activity in moist environments may
provide an additive defence against bacteria other
than melanin-based plumage pigmentation (‘Gloger’s
rule’; Burtt & Ichida, 2004). Birds living in moist
environments are known to have an increased risk of
parasitism by eggshell microbes (Cook et al., 2005;
Ruiz-de-Castañeda et al., 2011); however, it is
unknown whether avian species living in these envi-
ronments have an increased risk of parasitism by
keratinolytic microorganisms and/or richer feather
degrading bacteria communities than those living in
dry habitats.

Among the ecological traits that we tested, the
migratory behaviour for many different host groups is
known to influence risk of infection (Figuerola &
Green, 2000). Most avian pathogens are mesophilic
(Madigan et al., 2012), which suggests that tropical
conditions promote greater parasite diversity and
abundance. Therefore, we expected a larger invest-
ment in gland size in migratory species compared to
resident birds. In addition, migration might increase
infection risk not only through greater parasite abun-
dance in tropics, but also as a result of increased
coloniality and connections with other species.
However, by contrast to our prediction, we found that
long-distance migrants had the smallest (and resi-
dents the largest) gland sizes, at least during the
migratory period when all migrants were measured.
Burtt & Ichida (1999) found that feather-degrading
bacteria pressure was the highest during winter in
temperate resident birds, and Bisson et al. (2009)
found that resident birds had higher plumage micro-
bial diversity than migrants in the Nearctic. These
results are in line with our findings on larger gland
size of residents compared to migrants. Alternatively,
an allocation conflict with a competing costly trait,
such as migratory behaviour, may over-ride the ben-
efits of producing large quantities of waxes provided
that gland activity is also expensive (Piault et al.,
2008; Moreno-Rueda, 2010; Pap et al., 2013). It is
important to note that, in the present study, the gland
size of long-distance migratory species was measured
between spring and fall and therefore we have no
information on the size of their glands during the
winter. Birds are known to seasonally change their
uropygial oil production (Martín-Vivaldi et al., 2009;
Pap et al., 2010), with only one study actually follow-
ing the change in gland size throughout the entire
annual cycle, showing a dramatic increase during
breeding (Pap et al., 2010). However, except for this
study on a sedentary bird species, we do not know
how the gland size changes seasonally in migratory

bird species. Further studies are required that
measure gland size and microbiota community in
migratory and resident birds throughout the year
with the aim of understanding of the seasonal adap-
tive change in oil production.

DEVELOPMENTAL PERIOD AND GLAND SIZE

Following the hypothesis that there is selection pres-
sure for larger gland oil production in response to
long exposure time of the eggs to microbes, we
expected a positive association between the gland
size measured during the breeding season and length
of the incubation period. However, by contrast to this
hypothesis, we found a year-round significant nega-
tive correlation between the incubation period and
gland size, a finding that suggests a long-term carry-
over effect of the incubation period on gland size. We
speculate that species with slower growth rate (i.e.
long incubation period) regularly live slow and die
old. Species with a slower ‘pace-of-life’ invest more
in immunocompetence and antioxidant system to
ensure a longer lifespan (Ricklefs, 1992; Lee et al.,
2008). We argue that this might constrain gland
activity for three reasons. First, gland activity and
immune response are conflicting commodities (Piault
et al., 2008). Second, components of the constitutive
immune system responsible for antimicrobial protec-
tion (e.g. lysozyme) might be partially complemen-
tary with the defence provided by the gland oils
(Giraudeau et al., 2010b; Soler et al., 2011).
Giraudeau et al. (2010b) experimentally demon-
strated increased lysozyme concentrations of female
birds with no access to their preen glands compared
to control birds. Also, a comparative study by Soler
et al. (2011) showed a negative relationship between
innate immunity (natural antibodies and comple-
ment) and eggshell bacterial load. Third, gland activ-
ity and other survival-enhancing functions (e.g.
immune and antioxidant system) are genetically
linked by pleiotropic genes (Ducrest, Keller & Roulin,
2008). In conclusion, these studies are consistent
with our results and suggest that slow-living species
with long development and long lifespan prioritize
physiological defence systems over an effective
defence through gland oils to increase survival expec-
tancy. However, this hypothesis deserves future
investigations.

In conclusion, the present study provides (strong)
support for the important role played by uropygial
gland secretions as a defence mechanism against
feather and eggshell microorganisms in birds. We
show that the amount of secretions produced dynami-
cally varies along the year across species and the
change is a complex response to ecological and life-
history circumstances.
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Table A3. Full and minimal phylogenetic generalized least squares weighted models explaining relative overall uropygial
gland size

Full model Minimal model

β (SE) t P β (SE) t P

Intercept 2.09 (0.42) 4.93 < 0.0001 2.66 (0.24) 11.13 < 0.0001
Body mass 0.85 (0.07) 11.91 < 0.0001 0.89 (0.05) 18.70 < 0.0001
Incubation –0.02 (0.02) –1.51 0.1336 –0.03 (0.01) –2.04 0.0433
Habitat: riparian* 0.23 (0.11) 2.11 0.0373 0.22 (0.11)** 1.99 0.0486

Aquatic 0.46 (0.18) 2.52 0.0131 0.48 (0.18) 2.64 0.0093
Migration: short† –0.06 (0.08) –0.70 0.4866 –0.06 (0.08)†† –0.74 0.4592

Long –0.18 (0.09) –2.10 0.0382 –0.19 (0.08) –2.25 0.0261
Fledging –0.01 (0.01) –1.04 0.3027
Total eggshell surface 0.20 (0.13) 1.53 0.1295
Sociality –0.01 (0.08) –0.07 0.9498
Nest type: open –0.03 (0.09) –0.31 0.7545

The minimal models were obtained by eliminating nonsignificant predictors from the full models in a backward stepwise
manner based on the largest P-value. Model intercepts implement the first level of each factor (i.e. terrestrial species in
the case of habitat and resident species in the case of migratory behaviour). All other levels of the candidate factor are
compared to the level implemented in the intercept. Significant P-values are shown in bold.
*No significant difference between groups riparian and aquatic: β (SE) = 0.19 (0.21), t = 0.91, P = 0.3623.
†No significant difference between groups short- and long-distance migrant: β (SE) = −0.12 (0.07), t = −1.74, P = 0.0841.
**No significant difference between groups riparian and aquatic: β (SE) = 0.26 (0.21), t = 1.28, P = 0.2035.
††No significant difference between groups short- and long-distance migrant: β (SE) = −0.13 (0.07), t = −1.85, P = 0.0673.

Table A4. Full and minimal phylogenetic generalized least squares weighted models explaining relative breeding season
uropygial gland size

Full model Minimal model

β (SE) t P β (SE) t P

Intercept 1.66 (0.49) 3.40 0.0009 1.49 (0.48) 3.12 0.0023
Body mass 0.77 (0.09) 8.65 < 0.0001 0.68 (0.08) 8.77 < 0.0001
Total eggshell surface 0.37 (0.17) 2.23 0.0276 0.36 (0.15) 2.31 0.0228
Incubation –0.03 (0.02) –1.42 0.1592
Habitat: riparian* 0.21 (0.12) 1.83 0.0697

Aquatic 0.36 (0.21) 1.70 0.0921
Migration: short† –0.14 (0.09) –1.62 0.1087

Long –0.18 (0.10) –1.82 0.0721
Fledging –0.01 (0.01) –0.63 0.5322
Sociality: social 0.09 (0.11) 0.79 0.4327
Nest type: open 0.04 (0.10) 0.38 0.7065

The minimal models were obtained by eliminating nonsignificant predictors from the full models in a backward stepwise
manner based on the largest P-value. Model intercepts implement the first level of each factor (i.e. terrestrial species in
the case of habitat and resident species in the case of migratory behaviour). All other levels of the candidate factor are
compared to the level implemented in the intercept. Significant P-values are shown in bold.
*No significant difference between groups riparian and aquatic: β (SE) = 0.15 (0.23), t = 0.62, P = 0.5361.
†No significant difference between groups short- and long-distance migrant: β (SE) = −0.03 (0.08), t = −0.42, P = 0.6739.
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Table A5. Full and minimal phylogenetic generalized least squares weighted models explaining relative nonbreeding
season uropygial gland size

Full model Minimal model

β (SE) t P β (SE) t P

Intercept 2.89 (0.47) 6.19 < 0.0001 3.01 (0.25) 12.15 < 0.0001
Body mass 0.87 (0.07) 12.00 < 0.0001 0.85 (0.05) 16.37 < 0.0001
Incubation –0.04 (0.02) –2.33 0.0228 –0.05 (0.01) –3.16 0.0023
Habitat: riparian* 0.29 (0.13) 2.20 0.0307 0.26 (0.13)** 2.02 0.0473

Aquatic 0.64 (0.21) 3.07 0.0030 0.67 (0.20) 3.28 0.0016
Migration: short† –0.17 (0.11) –1.58 0.1195 −0.17 (0.10)†† –1.69 0.0947

Long –0.36 (0.11) –3.25 0.0018 –0.37 (0.10) –3.57 0.0006
Sociality: social –0.18 (0.11) –1.72 0.0889 0.22 (0.10) 2.24 0.0280
Nest type: open 0.00 (0.11) 0.01 0.9893
Fledging –0.01 (0.01) –0.96 0.3380
Total eggshell surface 0.03 (0.15) 0.21 0.8340

The minimal models were obtained by eliminating nonsignificant predictors from the full models in a backward stepwise
manner based on the largest P-value. Model intercepts implement the first level of each factor (i.e. terrestrial species in
the case of habitat and resident species in the case of migratory behaviour). All other levels of the candidate factor are
compared to the level implemented in the intercept. Significant P-values are shown in bold.
*No significant difference between groups riparian and aquatic: β (SE) = 0.35 (0.25), t = 1.40, P = 0.1650.
†Significant difference between groups short- and long-distance migrant: β (SE) = −0.19 (0.08), t = −2.47, P = 0.0160.
**No significant difference between groups riparian and aquatic: β (SE) = 0.41 (0.24), t = 1.70, P = 0.0924.
††Significant difference between groups short- and long-distance migrant: β (SE) = −0.20 (0.08), t = −2.62, P = 0.0105.

Table A6. Full and minimal phylogenetic generalized least squares weighted models explaining seasonal change in
uropygial gland size (difference between the values during the reproductive season minus the value obtained during the
nonreproductive season)

Full model Minimal model

β (SE) t P β (SE) t P

Intercept –1.08 (0.55) –1.95 0.0560 –0.82 (0.43) –1.91 0.0612
Body mass –0.04 (0.07) –0.58 0.5626 –0.07 (0.07) –0.90 0.3693
Total eggshell surface 0.34 (0.17) 2.00 0.0512 0.29 (0.14) 2.07 0.0428
Sociality: social 0.36 (0.10) 3.57 0.0008 0.30 (0.08) 3.79 0.0004
Incubation –0.01 (0.02) –0.86 0.3930
Fledging 0.01 (0.01) 0.74 0.4599
Habitat: riparian* 0.02 (0.10) 0.16 0.8739

Aquatic 0.07 (0.18) 0.39 0.6965
Migration: short† 0.11 (0.11) 1.04 0.3035

Long 0.20 (0.11) 1.82 0.0748
Nest type: open –0.07 (0.08) –0.88 0.3826

The minimal models were obtained by eliminating nonsignificant predictors from the full models in a backward stepwise
manner based on the largest P-value. Model intercepts implement the first level of each factor (i.e. terrestrial species in
the case of habitat and resident species in the case of migratory behaviour). All other levels of the candidate factor are
compared to the level implemented in the intercept. Significant P-values are shown in bold.
*No significant difference between groups riparian and aquatic: β (SE) = −0.05 (0.21), t = −0.27, P = 0.7911.
†No significant difference between groups short- and long-distance migrant: β (SE) = −0.08 (0.07), t = −1.14, P = 0.2607.

VARIATION IN UROPYGIAL GLAND SIZE 21

© 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, ••, ••–••


